
Smart contract
security audit

Quantum
v.1.0

No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other right reserved to its copyright a CTDSec,

including photocopying and all other copying, any transfer or transmission using any network or other means of communication, in any form or

by any means such as any information storage, transmission or retrieval system, without prior written permission.

Table of Contents

1.0 Introduction 3

1.1 Project engagement 3

1.2 Disclaimer 3

2.0 Coverage 3

2.1 Target Code and Revision 3

2.2 Attacks made to the contract 4

3.0 Security Issues 6

3.1 High severity issues [0] 6

3.2 Medium severity issues [0] 6

3.3 Low severity issues [1] 6

4.0 Summary of the audit 11

Copyright © CTDSec - All rights reserved 2 | Page

1.0 Introduction

1.1 Project engagement

During May of 2021, Quantum engaged CTDSec to audit smart contracts that they created. The

engagement was technical in nature and focused on identifying security flaws in the design and

implementation of the contracts. Quantum provided CTDSec with access to their code repository and

whitepaper.

1.2 Disclaimer

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the network’s fast-paced and

rapidly changing environment, we at CTDSec recommend that Quantum team put in place a

bug bounty program to encourage further and active analysis of the smart contract.

2.0 Coverage

2.1 Target Code and Revision

For this audit, we performed research, investigation, and review of the Quantum contract followed by

issue reporting, along with mitigation and remediation instructions outlined in this report. The

following code files are considered in-scope for the review:

Source:

Quantum2.sol - 0578485ef24b2caa2a1a575bed5fca3853d35394f4bc896484eb50ecbdc83aeb [SHA256]

Copyright © CTDSec - All rights reserved 3 | Page

2.2 Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in order to make sure

that the contract is secure and follows best practices.

№ Issue description. Checking status

1 Compiler warnings. PASSED

2 Race conditions and Reentrancy. Cross-function race
conditions.

PASSED

3 Possible delays in data delivery. PASSED

4 Oracle calls. PASSED

5 Front running. PASSED

6 Timestamp dependence. PASSED

7 Integer Overflow and Underflow. PASSED

8 DoS with Revert. PASSED

9 DoS with block gas limit. LOW ISSUES -
FIXED BY DEV
TEAM

10 Methods execution permissions. PASSED

11 Economy model. If application logic is based on an
incorrect economic model, the application would not
function correctly and participants would incur financial
losses. This type of issue is most often found in bonus
rewards systems, Staking and Farming contracts, Vault and
Vesting contracts, etc.

PASSED

12 The impact of the exchange rate on the logic. PASSED

13 Private user data leaks. PASSED

14 Malicious Event log. PASSED

15 Scoping and Declarations. PASSED

Copyright © CTDSec - All rights reserved 4 | Page

16 Uninitialized storage pointers. PASSED

17 Arithmetic accuracy. PASSED

18 Design Logic. PASSED

19 Cross-function race conditions. PASSED

20 Safe Zeppelin module. PASSED

21 Fallback function security. PASSED

22 Overpowered functions / Owner privileges PASSED

Copyright © CTDSec - All rights reserved 5 | Page

3.0 Security Issues

3.1 High severity issues [0]

No high severity issues found.

3.2 Medium severity issues [0]

No medium severity issues found.

3.3 Low severity issues [1]

1.OUT OF GAS

Issue:

The function includeInReward uses the loop to find and remove addresses from the _excluded list.

Function will be aborted with OUT_OF_GAS exception if there will be a long excluded addresses list.

The function _getCurrentSupply also uses the loop for evaluating total supply. It also could be aborted

with OUT_OF_GAS exception if there will be a long excluded addresses list.

Recommendation:

Check that the excluded array length is not too big.

Copyright © CTDSec - All rights reserved 6 | Page

Functions outline

+ Context
- [Int] _msgData

- Int] _msgSender

+ [Int] IERC20
- [Ext] totalSupply
- [Ext] balanceOf
- [Ext] transfer #
- [Ext] allowance
- [Ext] approve #
- [Ext] transferFrom #

+ [Lib] SafeMath
- [Int] add
- [Int] sub
- [Int] sub
- [Int] mul
- [Int] div
- [Int] div
- [Int] mod
- [Int] mod

+ [Lib] Address
- [Int] isContract
- [Int] sendValue #
- [Int] functionCall #
- [Int] functionCall #
- [Int] functionCallWithValue #
- [Int] functionCallWithValue #
- [Prv] _functionCallWithValue #

+ Ownable (Context)
- [Pub] <Constructor> #
- [Pub] owner
- [Pub] renounceOwnership #

- modifiers: onlyOwner
- [Pub] transferOwnership #

- modifiers: onlyOwner
- [Pub] geUnlockTime
- [Pub] lock #

Copyright © CTDSec - All rights reserved 7 | Page

- modifiers: onlyOwner
- [Pub] unlock #

+ [Int] IUniswapV2Factory
- [Ext] feeTo
- [Ext] feeToSetter
- [Ext] getPair
- [Ext] allPairs
- Ext] allPairsLength
- [Ext] createPair #
- [Ext] setFeeTo #
- [Ext] setFeeToSetter #

+ [Int] IUniswapV2Pair
- [Ext] name
- [Ext] symbol
- [Ext] decimals
- [Ext] totalSupply
- [Ext] balanceOf
- [Ext] allowance
- [Ext] approve #
- [Ext] transfer #
- [Ext] transferFrom #
- [Ext] DOMAIN_SEPARATOR
- [Ext] PERMIT_TYPEHASH
- [Ext] nonces
- [Ext] permit #
- [Ext] MINIMUM_LIQUIDITY
- [Ext] factory
- [Ext] token0
- [Ext] token1
- [Ext] getReserves
- [Ext] price0CumulativeLast
- [Ext] price1CumulativeLast
- [Ext] kLast
- [Ext] mint #
- [Ext] burn #
- [Ext] swap #
- [Ext] skim #
- [Ext] sync #
- [Ext] initialize #

+ [Int] IUniswapV2Router01

Copyright © CTDSec - All rights reserved 8 | Page

- [Ext] factory
- [Ext] WETH
- [Ext] addLiquidity #
- [Ext] addLiquidityETH ($)
- [Ext] removeLiquidity #
- [Ext] removeLiquidityETH #
- [Ext] removeLiquidityWithPermit #
- [Ext] removeLiquidityETHWithPermit #
- [Ext] swapExactTokensForTokens #
- [Ext] swapTokensForExactTokens #
- [Ext] swapExactETHForTokens ($)
- [Ext] swapTokensForExactETH #
- Ext] swapExactTokensForETH #
- [Ext] swapETHForExactTokens ($)
- [Ext] quote
- [Ext] getAmountOut
- [Ext] getAmountIn
- [Ext] getAmountsOut
- [Ext] getAmountsIn

+ [Int] IUniswapV2Router02 (IUniswapV2Router01)
- [Ext] removeLiquidityETHSupportingFeeOnTransferTokens #
- [Ext] removeLiquidityETHWithPermitSupportingFeeOnTransferTokens #
- [Ext] swapExactTokensForTokensSupportingFeeOnTransferTokens #
- [Ext] swapExactETHForTokensSupportingFeeOnTransferTokens ($)
- [Ext] swapExactTokensForETHSupportingFeeOnTransferTokens #

+ Quantum (Context, IERC20, Ownable)
- [Pub] <Constructor> #
- [Pub] name
- [Pub] symbol
- [Pub] decimals
- [Pub] totalSupply
- [Pub] balanceOf
- [Pub] transfer #
- [Pub] allowance
- [Pub] approve #
- [Pub] transferFrom #
- [Pub] increaseAllowance #
- [Pub] decreaseAllowance #
- [Pub] isExcludedFromReward
- [Pub] totalFees
- [Pub] nukeEm #

Copyright © CTDSec - All rights reserved 9 | Page

- modifiers: onlyOwner
- [Pub] enableFees #

- modifiers: onlyOwner
- [Pub] deliver #
- [Pub] reflectionFromToken
- [Pub] tokenFromReflection
- [Pub] excludeFromReward #
- modifiers: onlyOwner
- [Ext] includeInReward #
- modifiers: onlyOwner
- [Prv] _approve #
- [Prv] _transfer #
- [Prv] swapAndLiquify #
- modifiers: lockTheSwap
- [Prv] swapTokensForEth #
- [Prv] _tokenTransfer #
- Prv] _transferStandard #
- [Prv] _transferToExcluded #
- [Prv] _transferFromExcluded #
- [Prv] _transferBothExcluded #
- [Prv] _reflectFee #
- [Prv] _getValues
- [Prv] _getTValues
- [Prv] _getRValues
- [Prv] _getRate
- [Prv] _getCurrentSupply
- [Prv] _takeLiquidity #
- [Prv] calculateTaxFee
- [Prv] calculateLiquidityFee
- [Prv] removeAllFee #
- [Prv] restoreAllFee #
- [Pub] isExcludedFromFee
- [Pub] excludeFromFee #

- modifiers: onlyOwner
- [Pub] includeInFee #

- modifiers: onlyOwner
- [Ext] setTaxFeePercent #
- modifiers: onlyOwner
- [Ext] setLiquidityFeePercent #

- modifiers: onlyOwner
- [Pub] setStudioWallet #
- modifiers: onlyOwner
- [Pub] setGameWallet #

Copyright © CTDSec - All rights reserved 10 | Page

- modifiers: onlyOwner
- [Ext] setLpRewardFromLiquidityPercent #

- modifiers: onlyOwner
- [Pub] setSwapAndLiquifyEnabled #

- modifiers: onlyOwner
- [Ext] <Fallback> ($)

($) = payable function
= non-constant function

Recommendations

To do comments should be removed

4.0 Summary of the audit

Smart contracts contain low severity issues and owner privileges.

Swapped funds will be sent to the studio wallet, which could be changed by the owner.

Copyright © CTDSec - All rights reserved 11 | Page

